Stakeholders Platform Meeting (Zoom)
'Improving Environmental Management in the Mining Sector of Suriname with Emphasis on Artisanal and Small- Scale Goldmining' (EMSAGS) - Project

Date: 20 oktober 2022
Time: 09:00 a.m. -13:15 p.m.
Location: Banquet hall Torarica

Participants

The SP meeting was attended by representatives of:

- Ministries,
- Indigenous and Tribal peoples,
- Private sector,
- Small and large-scale mining organizations,
- NGOs, and
- Anton de Kom University.

Agenda

AGENDA	
9:00-9:30 a.m.	Registration
9:30-9:40 a.m.	Welcome
9:40-9:50 a.m.	Opening by Acting General Directeur NIMOS, Mr. Cedric Nelom
9:50-10:30 a.m.	Presentation dissertation: "The influence of prenatal exposure to non- chemical and chemical stressors on birth outcomes in Suriname" By: Dr. Anisma Gokoel
10:30-11:15 a.m.	Presentation: "Rosebel Goldmines NV management of Small Scale Mining" By: MSc. in Mineral Geoscience, Ms. Marijke Agwense of IAMGOLD/ Rosebel Gold Mines
11:15 a.m. - 12:00 p.m.	Presentation: "Mercury background values in soils and saprolites in the gold- rich greenstone belt of Suriname, Guiana Shield: The role of parent rock and residual enrichment" By: Prof. Salomon Kroonenberg
12:00-12:15 p.m.	Recap and Next meeting- EMSAGS PMU. Closing by the Permanent Secretary of Mining, Ministry of Natural Resources,
12:15-13:15 p.m.	Ms. P. Simons

Welcome and Opening

The Stakeholder Engagement Specialist, Ms. C. Elliott- Banai, welcomes the participants at 10:00 and informs that due to unforeseen circumstances, the Director of NIMOS is unable to open the meeting.

Presentation 1: "The influence of prenatal exposure to non-chemical and chemical stressors on birth outcomes in Suriname"
In this presentation Dr. Anisma Gokoel discusses the prenatal exposure to non-chemical and chemical stressors in pregnant women.
See annex 1 for the presentation.

No.	Questions / Comments	Answers
1.	Artisanal Gold Council - Marieke Heemskerk: a. Is it possible for a pregnant woman in Suriname to get tested for mercury levels in the blood? b. Does the Medical Mission carry out proactive testing in high risk groups?	Anisma Gokoel: a. Not sure if the Central Lab can test for mercury levels in blood. Mercury levels in the hair can be tested at the National Zoological Collection Suriname (NZCS). For this research into mercury concentrations in the blood, blood samples were sent to a laboratory abroad. b. Not sure if this is already being done by the Medical Mission.
2.	Chantal Landburg: Did you notice anything about the Apgar score of the children whose mothers had high levels of mercury?	Anisma Gokoel: No direct relationship has been identified. The absolute number with a low Apgar score was 15. Most children had a good Apgar score. The number was also much too small to see an association. We did see that there was an association with early birth.
3.	Camp Mining - Melleo Naana: In the city there are many gold buying companies that buy and process gold almost every day. My conclusion is that the pollution in Paramaribo will be much greater because gold is not processed every day in the interior. Where do you make the connection between the result of your research in the interior and the many gold buying companies in the city.	Anisma Gokoel: During the research, various regions such as Paramaribo and the surrounding area, Nickerie and the Interior were also examined. No significance was found, so no statement can be made about where it occurs most often. The high mercury levels mainly occurred among the indigenous and tribal peoples. I agree with you that gold is processed daily in Paramaribo, which also pollutes our atmosphere. It could be that the

		pollution is more than the Interior, but more research is needed for that.
4.	Anton de Kom University - Rene Artist: In your presentation you noted that a mental discomfort has been observed mainly among some of the female inhabitants of the interior. What is meant by mental discomfort, why especially in that group and what is the cause?	Anisma Gokoel: The results you mention were found in the study by Gunther et. al. What I conclude from this is that psychological discomfort was tested by means of a questionnaire and that depressive symptoms occurred. We looked at which socio-demographic variables are associated with psychological discomfort. This showed that the interior residents had a higher chance of
experiencing psychological discomfort.		
This research was not only conducted in		
the interior, but a sample was drawn		
from the whole of Suriname.		

| 7. | Alliance for Responsible Mining - Johannes Abielie:
 a. We also did a baseline study of mercury occurrences in the
 physical environment as well as in humans and we measured
 generally low levels in people in the Brokopondo district. The
 French research institute IRD took samples and what we can
 conclude from the results is that mercury accumulated in the
 food chain is more easily found in people's bodies. You hardly
 see any mercury in the body of the person who works with
 mercury, but mercury can be traced in the person who eats
 food that is contaminated with mercury. In that case the
 health impact is greater. In one of the villages, ten of the
 twelve samples had an elevated mercury contamination, a
 few of which had eight to nine times the acceptable value.
 Those people are not that closely involved in small-scale gold
 mining, but if you look at their dietary habits, they do have
 an association with the Brokopondo reservoir. |
| :--- | :--- | :--- |
| b. The largest source of mercury contamination in Suriname
 was the chimney of \quad Alcoa's smelter.
 All the gold that is mined in Suriname is processed in a small | |
| part of Paramaribo North, so you can imagine how
 concentrated the contamination of mercury in the air is in
 Paramaribo North. | |
| 8. | Arioene Vreedzaam
 I'm also doing a mercury study looking more at the
 environment. We may be coming out this year with
 publications on mercury measurements in the hair of
 women, mercury in fish, water and river sediment. We
 found very high levels of mercury in Apoera, Sipaliwini and
 Kwamalasemutu, Palumeu and Apetina. |

9. NIMOS - Donovan Bogor:

We also planned to go deeper into the possible mercury depositions in Suriname where we wanted to determine the age of mercury and establish if it is Surinamese mercury or mercury from abroad. Hopefully we will get the funding available to carry out this research.

Presentation 2: "Rosebel Gold Mines NV management of Small Scale Mining"

In this presentation, Rosebel Gold Mines' representative, Mrs. Marijke Agwense, gives an overview of the various initiatives that have been carried out by Rosebel Gold Mines in the surrounding areas of the Rosebel concessions where the small-scale miners are active. For more information on the presentation please contact Mrs. Agwense (see info in the registration list).

No.	Questions / Comments	Answers
1.	Anton de Kom University - Rene Artist: Have you noticed a correlation between the movement of small scale miners' activities on the concessions and the gold price?	Marijke Agwense: The gold price has something to do with it, but it's not that significant. It's only one of the aspects.
2.	Chantal Landburg: You indicated that finances are a problem. Can you explain that in more detail.	Mary Agwense: Mercury free mining is still trial and error and you need to have the funds available to keep investing in new methods. The budget of the Community Relations department is often informed by activities we do in the communities. With small scale mining it is more social risk management and there isn't a large budget available for this.

3.	Artisanal Gold Mining - Marieke Heemskerk: We have heard in the media that Rosebel Gold Mines has been sold to Zijin Mining Group. The experience with mines owned by Chinese mining companies in various African countries is that the health and safety standards, but also the community relations standards, are significantly different from those of a Canadian company. What will the acquisition mean for the community relations plans you have for the future.	Yoanne Najoe: At the moment we do not know more than what has been reported in the media. I think we should embrace the change and see what it brings us.
4.	Camp Mining - Melleo Naana: As Camp Mining we would like to express a special word of thanks to Rosebel Gold Mines for the experience gained in recent months. Can you share this working method with Newmont so that they can also implement what has been done in Nieuw Koffiekamp in Marowijne.	Yoanne Najoe: For every organization it is about finding out what works best for them given their situation and operation. We are willing to enter into partnerships with our peers if the need arises. It will mainly depend on their own situation, challenges and if they see value in our working method.

Presentation 3: "Mercury background values in soils and saprolites in the gold-rich greenstone belt of Suriname, Guiana Shield: The role of parent rock and residual enrichment"

In this presentation, Prof. Kroonenberg, explains the results of an assessment of mercury levels within gold bearing geological formations of Suriname.
See annex 2 for the presentation.
$\left.\begin{array}{|l|l|l|}\hline \text { No. } & \text { Questions } & \text { Answers } \\ \hline \text { 1. } & \begin{array}{l}\text { Alliance for Responsible Mining - Yves Bertrand: } \\ \text { Despite of the low levels of mercury that you found on } \\ \text { artisanal and small scale mining sites, do you think that } \\ \text { remobilizing the saprolites with milling and processing will } \\ \text { also remobilize the mercury and have an influence on the } \\ \text { mercury levels in the streams? }\end{array} & \begin{array}{l}\text { Salomon Kroonenberg: } \\ \text { What we see in the streams } \\ \text { could be largely materials from } \\ \text { the saprolites and top soil. Even } \\ \text { though we see increasing } \\ \text { mercury levels in the younger } \\ \text { sediments, it can be the result of }\end{array} \\ \text { recent mining and not } \\ \text { necessarily the result of mercury } \\ \text { pollution. You also see it in the } \\ \text { quality of the sediment if you } \\ \text { look at the unpolluted rivers } \\ \text { than the sediment is grey but if } \\ \text { you look at the rivers that have } \\ \text { material that comes from the } \\ \text { mines, the sediment is red. }\end{array}\right]$

3.	NIMOS - Donovan Bogor: Professor Kroonenberg's research is part of a three-part study. An important part that is now performed by Mrs. Wesenhagen in collaboration with Mr. Wip has to do with the air pollution in Paramaribo. The research is still ongoing and hopefully we will receive the results very soon.	

Next meeting

The EMSAGS Project Management Unit proposes to have the next meeting in February 2023. A report of the current meeting, including the presentations, will be shared with the members of the Stakeholders Platform and on the EMSAGS website.

Closing

In her closing remarks, the Permanent Secretary of the Ministry of Natural Resources, Mrs. P. Simons, thanks the attendees and presenters for their attendance. The Ministry of Natural Resources is well aware of the mercury use in Suriname and is pleased with the various studies that are currently being done in the context of mercury pollution. Suriname has committed itself to the Minamata Convention and the EMSAGS project is one of the ways in which we want to give substance to this. The use of mercury occurs all over the world and foreign countries are much further than Suriname when it comes to implementing environmentally responsible techniques. Finding environmentally responsible techniques does not happen overnight. Together with the small scale miners, we want to see which method we can identify and thus limit the use of mercury in Suriname.

Annex 1

Presentation 1: "The influence of prenatal exposure to non-chemical and chemical stressors on birth outcomes in Suriname"

This research was funded by the Fogarty International Center of the National Institutes of Health (NIH), grant numbers U01TW010087 and U2RTW010104

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

OVERVIEW

- Background and significance
- Research goal
- Hypothesis and aims
- Results
- Discussion
- Recommendations

Zwangeren gevraagd voor onderzoek

BACKGROUND

- The prevalence of preterm birth (PTB) and low birthweight (LBW) in Suriname: respectiv ely 14% and $15 \%(20162017)$ (Verschueren et al. 2020)
- Pregnant women may be exposed to multiple environmental factors at once: non-chemical and chemical stressors (Pao at al. 2019; Vesterinen 2017)
- Suriname: (1) Use of mercury (Hg) in goldmining (ASGM), (2) High levels of Hg in hair (above USEPA action level) in womenand children living in the Interior (3) 19.5\% mental distress, particularly in (among others) participants of Tribal descent and living in urban areas, (Ouboter et al. 2012), (Ouboter et al. 2018; Mohan et al. 2005), (Gunther et al. 2017)
- No studies have been conducted to examine the influence of nor chemical and chemical exposures on birth outcomes in Suriname

RESEARCH GOAL

Examine the influence of prenatal exposure to non-chemical and chemical stressors in pregnant women on birth outcomes

HYPOTHESIS

Prenatal exposure to non-chemical and chemical stressors in pregnant women negatively influences birth outcomes

METHODS

- Caribbean Consortium for Research in Environmental and Occupational Health (CCREOH MeKiTamarastudy)
- Prospective environmental epidemiologic cohort study which addresses the impact of chemical and non-chemical environmental exposures on mother/child dyads in Suriname
- A total of 1200 participants were included from December 201-6September 2020
- Recruitment sites: 5 hospitals (Academic Hospital Paramarib®Diakonessenhuis Hospital, 's Lands Hospital, St.Vincentius Hospital, Mungra Medical Centre), prenatal health facilities of the Regional Health Department and the Medical Mission Primary Health Care Suriname
- Inclusion criteria: 16 years or older, spoke DutchSaramaccan, or Trio, singleton gestation, planning to give birth at one of the study sites, provided written informed consent/assent

CARIBBEAN CONSORTIUM FOR RESEARCH IN ENVIRONMENTAL AND OCCUPATIONAL HEALTH (CCREOH) RECRUITMENT SITES \& NUMBERS ($\mathrm{N}=1200$)

Demographics study population:

- Region:

Paramaribo: 768
Nickerie:224
Interior: 208

- Age: 16-49 years
- Ethnicity.

Creole: 21.8%
Hindustani: 19.7\%
Indigenous: 10.8\%
Javanese:7.1\%
Maroon:21.9\%
Mixed:18.6\%

1 Paramaribo
2 Nickerie
Aim to include: 200 pregnant women
3 Brokopondo Region Villages: Pikien Saron - Powakka - Redidoti - Klaaskreek - Brownsweg Aim to include: 80 pregnant women

4 Kwamalasamutu Aim to include: 30 pregnant women

5 Apoera \& Wasjabo
6 Upper Suriname

7 Tepoe
Aim to include 20 pregnant women

Maternal Assessments Timeline

Children's Assessments Timeline

Assessments	Trimester	Birth	$\begin{gathered} 12 \\ \mathrm{mos} \end{gathered}$	$\begin{gathered} 36 \\ \text { mos } \end{gathered}$
At birth				
Mode of delivery		-		
Cord or heelprick blood sample		-		
Birth outcomes		\bullet		
Child development				
Physical examination			-	-
Questionnaires				
Generation R			-	\bullet
M-CHAT				-
Child Behavior Checklist				-
Bayley SEQ				-
Ages and Stages Questionnaire				\bullet
Neurodevelopmental tests				
BSID-III			-	
CANTAB				
Biological samples				
Buccal swab			-	\bullet
Blood				-
Urine				-

 AIM1: CHARACTERIZE THE INFLUENCE OF PERCEIVED STRESS, SOCIAL- AND DEMOGRAPHIC VARIABLES ON DEPRESSION DURING PREGNANCY;METHODS

- $1^{\text {st }}$ or $2^{\text {nd }}$ trimester: data of 1143 participants
- 3rd trimester: data of 743 participants
- Questionnaires: three self-report questionnaires

1. Social Support List-Interactions-12 (SSL-I-12)

- SSL-I-12 assesses social support (support, affection, and attention from family and friends)
- median scores used as cułoff points (higher scores=>high social support)

(15) HISABS
 LOBI YU LIPI, hROKO KRIN GOLTV

> AIM1: CHARACTERIZE THE INFLUENCE OF PERCEIVED STRESS, SOCIAL- AND DEMOGRAPHIC VARIABLES ON DEPRESSION DURING PREGNANCY;METHODS CONT'D
2. Cohen's Perceived Stress Scale (PSS)

PSS assesses perceived stress (e.g. the degree of experiencing stress due to having no control over things)
total score ranges from 0 (lowest stress level) to 40 (highest stress level) points; cut-off of ≥ 20 points for high perceived stress ($75^{\text {th }}$ percentile)
3. Edinburgh Postnatal Depression Scale (EPDS)

- assesses postnatal depression, but has been validated for use prenatally (EDS) (anxiety and depression symptoms)
- sum score of all statements: 0 to 30 points (higher score means higher risk on probable depression); cut-off point of ≥ 12 points for probable deprescicRROH

AIM1: CHARACTERIZE THE INFLUENCE OF PERCEIVED STRESS, SOCIAL- AND DEMOGRAPHIC VARIABLES ON DEPRESSION DURING PREGNANCY

Influence of perceived stress on prenatal depression in Surinamese women enrolled in the CCREOH study

Anisma R. Gokoel ${ }^{1,3^{*}} \odot$, Firoz Abdoel Wahid ${ }^{1,2}$, Wilco C. W. R. Zijlmans ${ }^{2,3,4}$, Arti Shankar ${ }^{2}$, Ashna D. Hindori-Mohangoo ${ }^{2,4}$, Hannah H. Covert ${ }^{2}$, Meerte-Sigrid MacDonald-Ottevanger ${ }^{1,5}$, Maureen Y. Lichtveld ${ }^{6}$ and Emily W. Harville ${ }^{7}$

Results

Aims 2 \& 3:

Assess the impact of prenatal exposure to perceived stress and depression on birth outcomes (PTB, LBW and Iow Apgar score)

\&

Assess the impact of prenatal exposure to
mercury on birth outcomes (PTB, LBW and low Apgar score)

- Questionnaires:

- Cohen's Perceived Stress Scale (PSS) (cułoff point 75th percentile)
- Edinburgh Depression Scale (EDS) (cut-off point ≥ 12 points)
- Birth outcome variables:
- Iow birthweight: <2,500 g
- preterm birth: before 37 completed weeks of gestation
- Iow Apgar score: <7 at 5 min
- Hair mercury: cut-off elevated mercury levels: $\geq 1.1 \mu \mathrm{~g} / \mathrm{g}$, US Environm Protection Agency (US EPA) action level

AIM 2\&3: ASSESS THE IMPACT OF PRENATAL EXPOSURE TO PERCEIVED STRESS, DEPRESSION AND MERCURY ON BIRTH OUTCOMES

- Prevalence of preterm birth (PTB), lowbirthweight (LBW) and low Apgar score were respectiv ely: $15.2 \%, 13.2 \%$ and 3.3% (Gokoel et al. 2020)
- Perceived stress was associated with low Apgar score (OR 9.73; p=0.004) (Gokoel et al. 2020)
- Elevated hair mercury levels were significantly associated with preterm birth (OR 2.47; $\mathrm{p}=0.039$) (Gokoel et al. 2020)

(D) RUSILS
 LOBI YU LBP, hROKO KRNW COLTV

Results
Aim 4:
Examine the cumulative exposure to non-chemical stressors (perceived stress, depression, BMI) and chemicals (Hg, Pb, tin
(Sn), Se) on
birth outcomes (GA, BW, Apgar score)

CCREOH

AIM 4: EXAMINE THE CUMULATIVE EXPOSURE TO NON-CHEMICAL STRESSORS AND CHEMICALS ON BIRTH OUTCOMES; METHODS

- 384 participants included
- Exposures:
- Chemicals: (mercury (Hg), lead (Pb), selenium (Se), tin (Sn)
- Perceived stress, probable depression, and social support
- Demographic variable: BMI
- Birth outcomes: gestational age at birth, birthweight and Apgar score

(2) Ruslese
 LOBI YU LIBI, HROKO KRNN GOLTV

OVERALL DISCUSSION

- Hypothesis: "Prenatal exposure to non-chemical and chemical stressors in pregnant CCREOH women negatively impact birth outcomeš
Based upon the results of the aims, the study hypothesis was accepted
- The prevalences of preterm birth (PTB) (15.2\%) and low birthweight (LBW) (13.2\%) were higher than the regional average of PTB (9.5\%) and LBW (10\%) of Latin American and the Caribbean countries
- No association was found between prenatal depression and adverse birth outcomes- screening instrument was used instead of clinical diagnosis to assess depression
- Participants with elevated hair mercury levels ($\geq 1.58 \mathrm{ug} / \mathrm{g}$) had a greater risk of giving birth before 37 weeks of gestation compared to women with lower hair mercury levels ($\leq 0.46 \mathrm{ug} / \mathrm{g}$)
- High likelihood of hair mercury exposure in pregnant women of Indigenous (OR 17.9; $\mathrm{p} \leq 0.001$) and Tribal (OR 3.7; $\mathrm{p} \leq 0.00$) descent compared to Hindustani women - people living in the interior largely depend on riverine fish for a protein source
- No association between the chemical latent construct and any birth outcomes
- Non-chemical stressors outweighed other effects (dominant role), protective effect of Se

STRENGTHS AND LIMITATIONS

- Strengths:
- first study in Suriname examining the effect of non-chemical stressors and a unique combination of chemical exposures on birth outcomes
- study population is a reasonably good representation of pregnancies in Suriname (large study population, ethnic and cultural diversity, several socio-demographic factors and the geographic diversity)
- Limitations:
- psychosocial questionnaires were not validated for Suriname before data collection
- Edinburgh Depression Scale is a screening tool and not a diagnostic tool

RECOMMENDATIONS

Implications for practice:

- A task shifting approach for health care

Implications for policy:

- Strengthen and enforce policies and laws regarding mercury use, ensure adequate monitoring of mercury use in goldmining to protect inhabitants

Implications for science:

- Other risk factors for perceived stress and depression (e.g., unintended pregnancies, domestic violence, and prenatal care utilization, influence of communicable and non-communicable diseases, culture)

(D) HINABS

(D) WIUSLIS

Annex 2:
Presentation 3: "Mercury background values in soils and saprolites in the gold-rich greenstone belt of Suriname, Guiana Shield: The role of parent rock and residual enrichment"

Contract NIMOS-AdeKUS

Assessment of mercury levels

 within gold bearing geological formations of SurinameObjective: establish regional mercury background values to be able to distinguish polluted from unpolluted materials

Project phases

- Desk study
- Field test sites and laboratoryanalyses
- Regional survey and laboratoryanalyses
- Comparisonresults with existing data on pristine and polluted materials
- Conclusionsand implications

(

Gold concessions for exploration (orange) and exploitation (brown) Goniniorg

Gold is concentrated in the greenstone belt

	Rock type	Age (1 Ga=16y)
Gran Rio Granite	Biotite granite	2.09 Ga
PikienRio Pyroxene Granite	Pyroxene granite	2.10 Ga
Rosebel Formation	Qz sandstones, conglomerates	2.12 Ga
Patamacca Granite	Two-mica granite	2.12 Ga
Taffra Schist	Staurolite schists	
Armina Formation	Metagreywackes, phyllites	$<2.16 \mathrm{Ga}$
Sara's Lust Gneiss	Migmatitic gneisses	$2.15-2.08 \mathrm{Ga}$
Kabel Tonalite	TTG-Tonalite, trondhjemite, granodiorite.18-2.12 Ga	
Paramaka Formation	Phyllite, metachert, gondite	
Paramak\&ormation	Metaqzandesitatc	2.14-2.15 Ga
Bemau Ultramafitite	(Meta)gabbrdMeta Ultra mafite	2.14 Ga
Paramak\&ormation	Metabasalt	
Paramak\&ormation	Amphibolite	

(1) HNSABS

 UN
D

Phase 1: Three test sites to develop methodology

Field test site 1, Afobaka Road

(a)

(aORI YV LIBI, HROVO KRIN GOLITV

Sampling instructions to field crews

Field Test Site 1 Afobaka Road

Panorama pilot site Afobaka Road km 55, 2021
gef UN
D P

FIILIB

SAM PLE REF.	Hg ug/kg
Quant. Lim.	$\mathbf{1 . 0}$
AFO-1 boorsample	62.50
AFO-1 0-10cm	51.00
AFO-1 10-40 cm	55.10
AFO-1 1-1.10m	49.50
AFO-1 2.30-2.40m	15.90
AFO-1 $\mathbf{3 . 5 0 - 3 . 6 0 \mathrm { m }}$	9.30
AFO-1 $\mathbf{6 m}$	1.00

AFO-2 $0-10 \mathrm{~cm}$	43.60
AFO-2 $10-30 \mathrm{~cm}$	162.60
AFO-2 1.20 m	40.80
AFO-2.10	18.30
AFO-2 3 m	19.60

Mercury at test sites AFO1 and AFO-2:
Hg value depends on
(1) Residual enrichment
(2) Concentration in ironcemented layers

Fig. 2. Concentration changes of H. and some maior and trace elements with depth in profile ARO1.
AFO 1 results: not only Hg analysed, but 40 additional elements: confirms role of residual enrichment of Hg together with $\mathrm{Fe}, \mathrm{Cr}, \mathrm{V}$ and other elements

Nimos
UN
DIP

(D) NISLIS

Hg and multi- element analyses Test Site 2
Nassau Plateau D, core MNA-31, 24 m depth, 79North, Ramdas, 2021

Photo Kishan Ramdas
Confirms residual enrichment Hg together with $\mathrm{Fe}, \mathrm{Cr}, \mathrm{V}$. Mg is leached from topsoil but still present in saprock , confirmed by chlorite in mineral separates
chlorite

(0) il닌

gef

(D) NISLIS

Phase 2: Regional survey Greenstone Belt

62 Sampling sites along road outcrops, 196 samples collected and analysed

Examples of profile descriptionsby students

Geol Unit Unit name	Rock type	Profile Numbers	From	To	Avg
40 Armina	Metaturbidite	NAS6,7,8, SEC 2	65	0	26
35 Gran Rio	Granite	SC17, 18	135	59	87
23 Kabalebo	Charnockite	W8	57	14	36
43 Kabel	Tonalite	SC19,20	80		30
42 Kwaikwai	Gneiss	SC14,15, 16	143	24	68
Papatam	Garnet tonalite	NAS1	48	19	32
44 Paramaka	Phyllite	W2,3	158	1	70
45 Paramaka	Kyanite quartzite	SEC4A, B	17	12	13
46 Paramaka	Meta-andesite	W4,5,SC4,10-13,SEC6, $9,10, \mathrm{AFO1,2,KrAB}$	313	0	71
51 Paramaka	Metabasalt	W6, SC8, 9	215	33	99
52 Paramaka	Amfiboliet	W7 Goliath	$\rightarrow 807$	93	472
38 Patamacca	2Mica granite	NAS 2,4,5,9, 10, 11, 12, SEC 3	178	0	22
37 Rosebel	Metasandstone	SC5, 6, 7, 21, SEC 12	68	0	16
41 Sara's Lust	Gneiss	SCE1 W 1	61	11	32
39 Taffra	Staur gar schist	SC 2,3, SEC1, NAS3, NAS11	249	11	102
24 Wonotobo	Granite	W9, 10	52	4	19
Pallid zone		SEC 5, 7, 8, 11, 1314			75
Analytical results per rock unit					

Hg values for soils and saprolites per major rock group

[^0]

Highest Hg values in individualprofiles, plotted on geologicalmap, highest in Paramaka (green

Phase 3: comparison with existing Hg values from pristine and polluted material

Mercury contents in uncontaminated hard rock drill cores from lamgold Rosebel Gold Mines

Only 39 out of 113 samples have Hg values above detection limit ($5 \mathrm{ppb} \mathrm{Hg}, \mathrm{M} \mid \mathrm{E}_{1} \mathrm{~S} 42$)

(1) HNSASS

Mercury in bauxite: also residual enrichment

In 2005 Suralco retrieved 200 kg mercury from bauxite refinery

Hg values for different types of bauxite in Suriname

Mercury values of Nassau Mountains bauxites

gef

(D) IUSLISS

Cinnabar (HgS, mercury ore) in Witlage gold placer, Nassau Mountains

Headley, 1913; Duyfjes, 1915; IJzerman, 1931; Billiton, 1953; Capps, 2004; Kroonenberg, 2019.

Mercury contents in tailings from Gros -Rosebel gold mines, 2002

Mine waste	$5.5-200 \mathrm{ppb} \mathrm{Hg}$
Sediment in streams below mines 110	-150 ppb Hg
Uncontaminatedbaselines (worldwide)	$14-18 \mathrm{ppb} \mathrm{Hg}$

Correlation Hg and methyl Hg in Rosebel sediments
Grayet al., 2002, Geoph Res. Letters
Same order of magnitude as in pristine soils and saprolites

(D) FINSASS

Hg values in Witi Creek gold area, Brownsberg. Arets et al., 2006, ALTERRA

Brownsberg	Hg ppb
Average soil primary forest $(n=4)$	200
Average soil secondary forest $(n=4)$	200
Average in between pits ($n=7$)	200
Average sediment sluice box $(n=8)$	780
Average sediment in pit $(n=6)$	250
Average sediment inentrance $(n=3)$	310
Average sedimentexit pit $(n=3)$	300

Same order of magnitude as in pristine soils and saprolites

Hg values in river sediments in Suriname

Average contents of $\mathrm{Hg}(\mathrm{ppb})$ in river sediments 2004-2005 (data and map from Ouboter et al., 2012, 2015)

Decrease of Hg contents with depth
in river sediments in Western Suriname (Ouboter et al., 2015)

Same order of magnitude as in pristine soils and saprolites

(D) MIISLIS

Research published in Science of the Total Environment, 2022

Saence of the Total Environment 848 (2022) 157631

Mercury background values in soils and saprolites in the gold-rich greenstone belt of Suriname, Guiana Shield: The role of parent rock and residual enrichment

Salomon Kroonenberg ${ }^{*, * *}$, Theo Wong, Ginny Bijnaar, Ramon Finkie, Kenneth Goenopawiro, Samjhawan Asneel, Morgan Lin-Tsung, Rivano Nanan, Kishan Ramdas, Prisan Sitaram
Anton de Kam Unthersiy of Surtume, Deporment of Gimrinces, Paramantho, Sutname

Possible follow-up research

- Detailed study correlation Hg with clay, org. matter in test profiles
- Hg isotopes, bindingwith mineralogy (hematite/goethite, Mn oxides)
- Redox conditions in anoxicgroundwater

Detailed Hg isotope graph for soils and sediments (Blum et al., 2014)
(3)
UN
DP

(

Unesco

"Building peace in the minds of men and women"
IN BRIEF WHAT WE DO WHERE WE WORK PARTNERS JOINUS RESOURCES

Project 696 - Impacts from Artisanal and Small-Scale Gold Mining in the Amazon

Project 696 - Impacts from Artisanal and Small-Scale Gold Mining in the Amazon Brief outline of the project

Largely because of use during the exploitation of gold, mercury is a health concern in many regions of the developing world including the Amazon. Mercury use and release is associated with artisanal and small-scale gold mining (ASGM), which is done by individuals or groups of miners mostly operating informally with little to no regulation.

UNESCO-IGCP programme, starts summer 2022

Conclusions

(1) Primary hardrock: low values, $\mathrm{Hg}<12 \mathrm{ppb}$
(2) Topsoils and iron-cemented horizons residually concentrate Hg up to 100-200 ppb, together with $\mathrm{Fe}, \mathrm{Cr}, \mathrm{V}$. Extreme residual values in bauxite (commonly 2000 ppb, highest 12000 ppb)
(3) Deeper horizons (mottled, pallid zones) are depleted to low levels ($\mathrm{Hg}<1 \mathrm{ppb}$)
(4) Range of values within individual profiles is higher than between profiles
(5) Fe-rich parent rocks have higher Hg in topsoils than quartz-feldspar-rich rocks
(D) WINESES

Implications

(1) Unpolluted (top)soils and saprolites have Hg values in the same range as stream sediments and mine tailings. This method is unsuitable to distinguish polluted samples from pristine ones. Probably isotope studies are necessary.
(2) Hg in soil and saprolite is probably not a hazard as long it remains bound to Fe -oxides in oxidized environments. Conversion to methyl-Hg requires reducing conditions e.g. in groundwater and mine pits. So avoid stagnant water in gold-mining areas!

[^0]: Quartz-feldspar -rich Iron-magnesium -rich

